ANNA UNIVERSITY, CHENNAI AFFILIATED INSTITUTIONS REGULATION 2017 B.TECH. PETROLEUM ENGINEERING CHOICE BASED CREDIT SYSTEM

1. PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

Graduates of B.Tech Petroleum Engineering will

- Exhibit a professional and ethical attitude, effective communication skills, teamwork, multidisciplinary approach, and an ability to solve the problems encountered in petroleum sector.
- II. Gain knowledge in basic sciences, mathematics, reservoir engineering and onshore & offshore petroleum engineering.
- III. Have a knowledge and competency in Petrochemical Engineering complemented by the appropriate skills and attributes.
- IV. Understand the theory and applications of analytical equipment used in industries for testing the quality of petroleum and its products.
- V. Address to meet the world's ever-increasing demand for hydrocarbon fuel, and waste management.

2. PROGRAMME OUTCOMES (POs):

On successful completion of the programme,

- I. Graduates will be able to demonstrate their knowledge professionally and shoulder ethical responsibilities.
- II. Graduates will able be to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- III. Graduates will be able to identify, formulate, and solve engineering problems related to petroleum industry.
- IV. Graduates will be capable to design experiments, analyze and interpret data.
- V. Graduates will be able to meet the world's ever-increasing demand for hydrocarbon fuel, reservoir engineering and waste management.
- VI. Graduates will be able to communicate effectively and work in interdisciplinary groups.
- VII. Graduates will have knowledge to analyze petroleum products.
- VIII. Graduates will understand the characteristics of source and reservoir engineering.
- IX. Graduates will become familiar with environmentally sound exploration, evaluation and recovery of oil, gas and other fluids in the earth.
- X. Graduates will Understand the pre requisites of onshore & offshore reservoir engineering

.

3. PEO / PO Mapping

Programme	Programme Outcomes									
Educational Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
I	✓	✓	✓			✓				✓
II			✓	✓			✓			
III	✓		✓	✓	✓		✓	✓	✓	✓
IV		✓	✓				✓			
V		✓					✓	✓	✓	

4. Semester Course wise PEO mapping

YEAR	SEM	Course Title	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО
			1	2	3	4	5	6	7	8	9	10
		Communicative English									$\sqrt{}$	
		Engineering		$\sqrt{}$				V				V
		Mathematics-I						'				٧
		Engineering Physics				$\sqrt{}$						
		Engineering Chemistry				V	$\sqrt{}$					
	Ξ	Problem Solving and		$\sqrt{}$								$\sqrt{}$
	SEM	Programming										
		Engineering Graphics	$\sqrt{}$									
		Physics and Chemistry				V	١,					
_		Laboratory				, v						
		Computer Practices	$\sqrt{}$	V								$\sqrt{}$
		Laboratory										
YEARI										ı		
Ϋ́Ε	=	Technical English		√							1	
		Engineering		$\sqrt{}$				$\sqrt{}$				$\sqrt{}$
		Mathematics-II										
		Physics of Materials				V	,					
		Organic Chemistry				√	√					
		Basic Mechanical										
	SEM	Engineering										
	0,	Introduction to Petroleum			$\sqrt{}$							
		Engineering										
		Organic Chemistry										
		Laboratory Engineering Practices										
		Laboratory										
		Laboratory			<u> </u>		<u> </u>]				

ANNA UNIVERSITY, CHENNAI AFFILIATED INSTITUTIONS B.TECH. PETROLEUM ENGINEERING REGULATION 2017

CHOICE BASED CREDIT SYSTEM I & II SEMESTERS CURRICULA AND SYLLABI

SEMESTER - I

S.No	COURSE CODE	COURSE TITLE	CATE GORY	CONTACT PERIODS	L	Т	Р	С			
THEO	THEORY										
1.	HS8151	Communicative English	HS	4	4	0	0	4			
2.	MA8151	Engineering Mathematics-I	BS	4	4	0	0	4			
3.	PH8151	Engineering Physics	BS	3	3	0	0	3			
4.	CY8151	Engineering Chemistry	BS	3	3	0	0	3			
5.	GE8151	Problem Solving and Python Programming	ES	3	3	0	0	3			
6.	GE8152	Engineering Graphics	ES	6	2	0	4	4			
PRAC	TICALS										
7.	GE8161	Problem Solving and Python Programming Laboratory	ES	4	0	0	4	2			
8.	BS8161	Physics and Chemistry Laboratory	BS	4	0	0	4	2			
			TOTAL	31	19	0	12	25			

SEMESTER - II

S.No	COURSE CODE	COURSE TITLE	CATE GORY	CONTACT PERIODS	L	Т	Р	С		
THEO	THEORY									
1.	HS8251	Technical English	HS	4	4	0	0	4		
2.	MA8251	Engineering Mathematics-II	BS	4	4	0	0	4		
3.	PH8254	Physics of Materials	BS	3	3	0	0	3		
4.	CY8291	Organic Chemistry	BS	3	3	0	0	3		
5.	BE8256	Basic Mechanical Engineering	ES	4	4	0	0	4		
6.	PE8201	Introduction to Petroleum Engineering	PC	3	3	0	0	3		
PRAC	TICALS									
7.	CY8281	Organic Chemistry Laboratory	BS	2	0	0	4	2		
8.	GE8261	Engineering Practices Laboratory	ES	4	0	0	4	2		
			TOTAL	27	21	0	8	25		

HS8151

COMMUNICATIVE ENGLISH

L T P C

OBJECTIVES:

- To develop the basic reading and writing skills of first year engineering and technology students.
- To help learners develop their listening skills, which will, enable them listen to lectures and comprehend them by asking questions; seeking clarifications.
- To help learners develop their speaking skills and speak fluently in real contexts.
- To help learners develop vocabulary of a general kind by developing their reading skills

UNIT I SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIENDS 12

Reading- short comprehension passages, practice in skimming-scanning and predicting- Writing-completing sentences- - developing hints. Listening- short texts- short formal and informal conversations. Speaking- introducing oneself - exchanging personal information- Language development- Wh- Questions- asking and answering-yes or no questions- parts of speech. Vocabulary development-- prefixes- suffixes- articles.- count/ uncount nouns.

UNIT II GENERAL READING AND FREE WRITING

12

Reading - comprehension-pre-reading-post reading- comprehension questions (multiple choice questions and /or short questions/ open-ended questions)-inductive reading- short narratives and descriptions from newspapers including dialogues and conversations (also used as short Listening texts)- register- **Writing** – paragraph writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested vocabulary and structures –**Listening**- telephonic conversations. **Speaking** – sharing information of a personal kind—greeting – taking leave- **Language development** – prepositions, conjunctions **Vocabulary development-** guessing meanings of words in context.

UNIT III GRAMMAR AND LANGUAGE DEVELOPMENT

12

Reading- short texts and longer passages (close reading) **Writing-** understanding text structure- use of reference words and discourse markers-coherence-jumbled sentences **Listening** — listening to longer texts and filling up the table- product description- narratives from different sources. **Speaking-** asking about routine actions and expressing opinions. **Language development-** degrees of comparison- pronouns- direct vs indirect questions- **Vocabulary development —** single word substitutes- adverbs.

UNIT IV READING AND LANGUAGE DEVELOPMENT

12

Reading- comprehension-reading longer texts- reading different types of texts- magazines **Writing**-letter writing, informal or personal letters-e-mails-conventions of personal email- **Listening**- listening to dialogues or conversations and completing exercises based on them. **Speaking-** speaking about oneself- speaking about one's friend- **Language development-** Tenses- simple present-simple past-present continuous and past continuous- **Vocabulary development-** synonyms-antonyms- phrasal verbs

UNIT V EXTENDED WRITING

12

Reading- longer texts- close reading **–Writing-** brainstorming -writing short essays – developing an outline- identifying main and subordinate ideas- dialogue writing-**Listening** – listening to talks-conversations- **Speaking** – participating in conversations- short group conversations-**Language development-**modal verbs- present/ past perfect tense - **Vocabulary development-**collocations-fixed and semi-fixed expressions

TOTAL: 60 PERIODS

OUTCOMES: At the end of the course, learners will be able to:

- Read articles of a general kind in magazines and newspapers.
- Participate effectively in informal conversations; introduce themselves and their friends and express opinions in English.
- Comprehend conversations and short talks delivered in English
- Write short essays of a general kind and personal letters and emails in English.

TEXT BOOKS:

- **1.** Board of Editors. **Using English** A Coursebook for Undergarduate Engineers and Technologists. Orient BlackSwan Limited, Hyderabad: 2015
- 2. Richards, C. Jack. Interchange Students' Book-2 New Delhi: CUP, 2015.

REFERENCES

- 1 Bailey, Stephen. Academic Writing: A practical guide for students. New York: Rutledge,2011.
- 2 Comfort, Jeremy, et al. Speaking Effectively: Developing Speaking Skillsfor BusinessEnglish. Cambridge University Press, Cambridge: Reprint 2011
- 3 Dutt P. Kiranmai and RajeevanGeeta. **Basic Communication Skills,** Foundation Books: 2013
- 4 Means, L. Thomas and Elaine Langlois. **English & Communication For Colleges.** CengageLearning, USA: 2007
- **5** Redston, Chris &Gillies Cunningham **Face2Face** (Pre-intermediate Student's Book& Workbook) Cambridge University Press, New Delhi: 2005

MA8151

ENGINEERING MATHEMATICS - I

L T P C 4 0 0 4

OBJECTIVES:

The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus. The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modelling the engineering problems mathematically and obtaining solutions. This is a foundation course which mainly deals with topics such as single variable and multivariable calculus and plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

UNIT I DIFFERENTIAL CALCULUS

12

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules - Maxima and Minima of functions of one variable.

UNIT II FUNCTIONS OF SEVERAL VARIABLES

12

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Maxima and minima of functions of two variables – Lagrange's method of undetermined multipliers.

UNIT III INTEGRAL CALCULUS

12

Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT IV MULTIPLE INTEGRALS

12

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals.

UNIT V DIFFERENTIAL EQUATIONS

12

Higher order linear differential equations with constant coefficients - Method of variation of parameters - Homogenous equation of Euler's and Legendre's type - System of simultaneous linear differential equations with constant coefficients - Method of undetermined coefficients.

TOTAL: 60 PERIODS

OUTCOMES:

After completing this course, students should demonstrate competency in the following skills:

- Use both the limit definition and rules of differentiation to differentiate functions.
- Apply differentiation to solve maxima and minima problems.
- Evaluate integrals both by using Riemann sums and by using the Fundamental Theorem of Calculus.
- Apply integration to compute multiple integrals, area, volume, integrals in polar coordinates, in addition to change of order and change of variables.
- Evaluate integrals using techniques of integration, such as substitution, partial fractions and integration by parts.
- Determine convergence/divergence of improper integrals and evaluate convergent improper integrals.
- Apply various techniques in solving differential equations.

TEXT BOOKS:

1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.

2. James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 7th Edition, New Delhi, 2015. [For Units I & III - Sections 1.1, 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

REFERENCES:

- 1. Anton, H, Bivens, I and Davis, S, "Calculus", Wiley, 10th Edition, 2016.
- 2. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. Narayanan, S. and Manicavachagom Pillai, T. K., "Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2007.
- 4. Srimantha Pal and Bhunia, S.C, "Engineering Mathematics" Oxford University Press, 2015.
- 5. Weir, M.D and Joel Hass, "Thomas Calculus", 12th Edition, Pearson India, 2016.

PH8151 ENGINEERING PHYSICS L T P C 3 0 0 3

OBJECTIVES:

• To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT I PROPERTIES OF MATTER

9

Elasticity – Stress-strain diagram and its uses - factors affecting elastic modulus and tensile strength – torsional stress and deformations – twisting couple - torsion pendulum: theory and experiment - bending of beams - bending moment – cantilever: theory and experiment – uniform and non-uniform bending: theory and experiment - I-shaped girders - stress due to bending in beams.

UNIT II WAVES AND FIBER OPTICS

9

Oscillatory motion – forced and damped oscillations: differential equation and its solution – plane progressive waves – wave equation. Lasers: population of energy levels, Einstein's A and B coefficients derivation – resonant cavity, optical amplification (qualitative) – Semiconductor lasers: homojunction and heterojunction – Fiber optics: principle, numerical aperture and acceptance angle-types of optical fibres (material, refractive index, mode) – losses associated with optical fibers - fibre optic sensors: pressure and displacement.

UNIT III THERMAL PHYSICS

9

Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity - Forbe's and Lee's disc method: theory and experiment - conduction through compound media (series and parallel) – thermal insulation – applications: heat exchangers, refrigerators, ovens and solar water heaters.

UNIT IV QUANTUM PHYSICS

9

Black body radiation – Planck's theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger's wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – tunnelling (qualitative) - scanning tunnelling microscope.

UNIT V CRYSTAL PHYSICS

9

Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances - coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures - crystal imperfections: point defects, line defects – Burger vectors, stacking faults – role of imperfections in plastic deformation - growth of single crystals: solution and melt growth techniques.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of this course,

- the students will gain knowledge on the basics of properties of matter and its applications,
- the students will acquire knowledge on the concepts of waves and optical devices and their applications in fibre optics,
- the students will have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers,
- the students will get knowledge on advanced physics concepts of quantum theory and its applications in tunneling microscopes, and
- the students will understand the basics of crystals, their structures and different crystal growth techniques.

TEXT BOOKS:

- **1.** Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2015.
- 2. Gaur, R.K. & Gupta, S.L. "Engineering Physics". Dhanpat Rai Publishers, 2012.
- 3. Pandey, B.K. & Chaturvedi, S. "Engineering Physics". Cengage Learning India, 2012.

REFERENCES:

- 1. Halliday, D., Resnick, R. & Walker, J. "Principles of Physics". Wiley, 2015.
- **2.** Serway, R.A. & Jewett, J.W. "Physics for Scientists and Engineers". Cengage Learning, 2010.
- **3.** Tipler, P.A. & Mosca, G. "Physics for Scientists and Engineers with Modern Physics'. W.H.Freeman, 2007.

OBJECTIVES:

- To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
- To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- Preparation, properties and applications of engineering materials.
- Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.
- Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.

UNIT I WATER AND ITS TREATMENT

9

Hardness of water – types – expression of hardness – units – estimation of hardness of water by EDTA – numerical problems – boiler troubles (scale and sludge) – treatment of boiler feed water – Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) external treatment – lon exchange process, zeolite process – desalination of brackish water - Reverse Osmosis.

UNIT II SURFACE CHEMISTRY AND CATALYSIS

9

Adsorption: Types of adsorption – adsorption of gases on solids – adsorption of solute from solutions – adsorption isotherms – Freundlich's adsorption isotherm – Langmuir's adsorption isotherm – contact theory – kinetics of surface reactions, unimolecular reactions, Langmuir - applications of adsorption on pollution abatement.

Catalysis: Catalyst – types of catalysis – criteria – autocatalysis – catalytic poisoning and catalytic promoters - acid base catalysis – applications (catalytic convertor) – enzyme catalysis – Michaelis – Menten equation.

UNIT III ALLOYS AND PHASE RULE

9

Alloys: Introduction- Definition- properties of alloys- significance of alloying, functions and effect of alloying elements- Nichrome and stainless steel (18/8) – heat treatment of steel. Phase rule: Introduction, definition of terms with examples, one component system -water system - reduced phase rule - thermal analysis and cooling curves - two component systems - lead-silver system - Pattinson process.

UNIT IV FUELS AND COMBUSTION

9

Fuels: Introduction - classification of fuels - coal - analysis of coal (proximate and ultimate) - carbonization - manufacture of metallurgical coke (Otto Hoffmann method) - petroleum - manufacture of synthetic petrol (Bergius process) - knocking - octane number - diesel oil - cetane number - natural gas - compressed natural gas (CNG) - liquefied petroleum gases (LPG) - power alcohol and biodiesel. Combustion of fuels: Introduction - calorific value - higher and lower calorific values- theoretical calculation of calorific value - ignition temperature - spontaneous ignition temperature - explosive range - flue gas analysis (ORSAT Method).

UNIT V ENERGY SOURCES AND STORAGE DEVICES

9

Nuclear fission - controlled nuclear fission - nuclear fusion - differences between nuclear fission and fusion - nuclear chain reactions - nuclear energy - light water nuclear power plant - breeder reactor -

solar energy conversion - solar cells - wind energy. Batteries, fuel cells and supercapacitors: Types of batteries – primary battery (dry cell) secondary battery (lead acid battery, lithium-ion-battery) fuel cells – H_2 - O_2 fuel cell.

TOTAL: 45 PERIODS

OUTCOMES:

 The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

- 1. S. S. Dara and S. S. Umare, "A Textbook of Engineering Chemistry", S. Chand & Company LTD, New Delhi, 2015
- 2. P. C. Jain and Monika Jain, "Engineering Chemistry" Dhanpat Rai Publishing Company (P) LTD, New Delhi, 2015
- 3. S. Vairam, P. Kalyani and Suba Ramesh, "Engineering Chemistry", Wiley India PVT, LTD, New Delhi, 2013.

REFERENCES:

- 1. Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014.
- 2. Prasanta Rath, "Engineering Chemistry", Cengage Learning India PVT, LTD, Delhi, 2015.
- 3. Shikha Agarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press, Delhi, 2015.

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING

LT PC 3 0 0 3

COURSE OBJECTIVES:

- To know the basics of algorithmic problem solving
- To read and write simple Python programs.
- To develop Python programs with conditionals and loops.
- To define Python functions and call them.
- To use Python data structures lists, tuples, dictionaries.
- To do input/output with files in Python.

UNIT I ALGORITHMIC PROBLEM SOLVING

9

Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II DATA, EXPRESSIONS, STATEMENTS

9

Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules

and functions, function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT III CONTROL FLOW, FUNCTIONS

9

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES

9

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

UNIT V FILES, MODULES, PACKAGES

9

Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.

OUTCOMES:

Upon completion of the course, students will be able to

- Develop algorithmic solutions to simple computational problems
- Read, write, execute by hand simple Python programs.
- Structure simple Python programs for solving problems.
- Decompose a Python program into functions.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python Programs.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016 (http://greenteapress.com/wp/think-python/)
- 2. <u>Guido van Rossum and Fred L. Drake Jr, "An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.</u>

REFERENCES:

- 1. <u>Charles Dierbach, "Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013.</u>
- 2. John V Guttag, "Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013
- 3. Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAGE Learning, 2012.
- 4. Paul Gries, Jennifer Campbell and Jason Montojo, "Practical Programming: An Introduction to Computer Science using Python 3", Second edition, Pragmatic Programmers, LLC, 2013.

- 5. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
- 6. Timothy A. Budd, "Exploring Python", Mc-Graw Hill Education (India) Private Ltd.,, 2015.

GE8152

ENGINEERING GRAPHICS

L T P C 2 0 4 4

OBJECTIVES:

- To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products.
- To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)

1

Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREEHAND SKETCHING

7+12

Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves.

Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects – Layout of views- Freehand sketching of multiple views from pictorial views of objects

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE

6+12

Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS

5+12

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES

5+12

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones.

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS

6+12

Principles of isometric projection – isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method .

TOTAL: 90 PERIODS

OUTCOMES:

On successful completion of this course, the student will be able to

- familiarize with the fundamentals and standards of Engineering graphics
- perform freehand sketching of basic geometrical constructions and multiple views of objects.
- project orthographic projections of lines and plane surfaces.
- draw projections and solids and development of surfaces.
- visualize and to project isometric and perspective sections of simple solids.

TEXT BOOK:

- 1. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.
- 2. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

REFERENCES:

- 1. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
- **2.** Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.
- **3.** Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2007.
- 4. Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 5. N S Parthasarathy And Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
- 6. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.

Publication of Bureau of Indian Standards:

- 1. IS 10711 2001: Technical products Documentation Size and lay out of drawing sheets.
- 2. IS 9609 (Parts 0 & 1) 2001: Technical products Documentation Lettering.
- 3. IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings.
- 4. IS 11669 1986 & SP 46 2003: Dimensioning of Technical Drawings.
- 5. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

Special points applicable to University Examinations on Engineering Graphics:

- 1. There will be five questions, each of either or type covering all units of the syllabus.
- 2. All questions will carry equal marks of 20 each making a total of 100.
- 3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.

The examination will be conducted in appropriate sessions on the same day

GE8161

PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY

LTPC 0042

OBJECTIVES:

- To write, test, and debug simple Python programs.
- To implement Python programs with conditionals and loops.
- Use functions for structuring Python programs.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python.

LIST OF PROGRAMS

- 1. Compute the GCD of two numbers.
- 2. Find the square root of a number (Newton's method)
- 3. Exponentiation (power of a number)
- 4. Find the maximum of a list of numbers
- 5. Linear search and Binary search
- 6. Selection sort, Insertion sort
- 7. Merge sort
- 8. First n prime numbers
- 9. Multiply matrices
- 10. Programs that take command line arguments (word count)
- 11. Find the most frequent words in a text read from a file
- 12. Simulate elliptical orbits in Pygame
- 13. Simulate bouncing ball using Pygame

PLATFORM NEEDED

Python 3 interpreter for Windows/Linux

OUTCOMES:

Upon completion of the course, students will be able to

- Write, test, and debug simple Python programs.
- Implement Python programs with conditionals and loops.
- Develop Python programs step-wise by defining functions and calling them.
- Use Python lists, tuples, dictionaries for representing compound data.
- Read and write data from/to files in Python.

TOTAL: 60 PERIODS

BS8161 PHYSICS AND CHEMISTRY LABORATORY L T P C (Common to all branches of B.E. / B.Tech Programmes) 0 0 4 2

OBJECTIVES:

 To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics, properties of matter and liquids.

LIST OF EXPERIMENTS: PHYSICS LABORATORY (Any 5 Experiments)

- 1. Determination of rigidity modulus Torsion pendulum
- 2. Determination of Young's modulus by non-uniform bending method
- 3. (a) Determination of wavelength, and particle size using Laser
 - (b) Determination of acceptance angle in an optical fiber.
- 4. Determination of thermal conductivity of a bad conductor Lee's Disc method.
- Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer
- 6. Determination of wavelength of mercury spectrum spectrometer grating
- 7. Determination of band gap of a semiconductor
- 8. Determination of thickness of a thin wire Air wedge method

TOTAL: 30 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to

apply principles of elasticity, optics and thermal properties for engineering applications.

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

OBJECTIVES:

- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by viscometery.
 - 1. Estimation of HCl using Na₂CO₃ as primary standard and Determination of alkalinity in water sample.
 - 2. Determination of total, temporary & permanent hardness of water by EDTA method.
 - 3. Determination of DO content of water sample by Winkler's method.
 - 4. Determination of chloride content of water sample by argentometric method.
 - 5. Estimation of copper content of the given solution by lodometry.
 - 6. Determination of strength of given hydrochloric acid using pH meter.
 - 7. Determination of strength of acids in a mixture of acids using conductivity meter.
 - 8. Estimation of iron content of the given solution using potentiometer.

- 9. Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthroline / thiocyanate method).
- 10. Estimation of sodium and potassium present in water using flame photometer.
- 11. Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer.
- 12. Pseudo first order kinetics-ester hydrolysis.
- 13. Corrosion experiment-weight loss method.
- 14. Determination of CMC.
- 15. Phase change in a solid.
- 16. Conductometric titration of strong acid vs strong base.

OUTCOMES:

 The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters.

TOTAL: 30 PERIODS

TEXTBOOKS:

1. Vogel's Textbook of Quantitative Chemical Analysis (8TH edition, 2014)

HS8251 TECHNICAL ENGLISH L T P C

OBJECTIVES: The Course prepares second semester engineering and Technology students to:

- Develop strategies and skills to enhance their ability to read and comprehend engineering and technology texts.
- Foster their ability to write convincing job applications and effective reports.
- Develop their speaking skills to make technical presentations, participate in group discussions.
- Strengthen their listening skill which will help them comprehend lectures and talks in their areas of specialisation.

UNIT I INTRODUCTION TECHNICAL ENGLISH 12

Listening- Listening to talks mostly of a scientific/technical nature and completing information-gap exercises- **Speaking** —Asking for and giving directions- **Reading** — reading short technical texts from journals- newsapapers- **Writing**- purpose statements — extended definitions — issue- writing instructions — checklists-recommendations-**Vocabulary Development**- technical vocabulary **Language Development** —subject verb agreement - compound words.

UNIT II READING AND STUDY SKILLS 12

Listening- Listening to longer technical talks and completing exercises based on them-**Speaking** – describing a process-**Reading** – reading longer technical texts- identifying the various transitions in a text- paragraphing- **Writing**- interpreting cgarts, graphs- **Vocabulary Development**-vocabularyused in formal letters/emails and reports **Language Development**- impersonal passive voice, numerical adjectives.

UNIT III TECHNICAL WRITING AND GRAMMAR

12

Listening- Listening to classroom lectures/ talkls on engineering/technology -**Speaking** – introduction to technical presentations- **Reading** – longer texts both general and technical, practice in speed reading; **Writing**-Describing a process, use of sequence words- **Vocabulary Development**-sequence words- Misspelled words. **Language Development**- embedded sentences

UNIT IV REPORT WRITING

12

Listening- Listening to documentaries and making notes. **Speaking** – mechanics of presentations-**Reading** – reading for detailed comprehension- **Writing**- email etiquette- job application – cover letter –Résumé preparation(via email and hard copy)- analytical essays and issue based essays-**Vocabulary Development**- finding suitable synonyms-paraphrasing-. **Language Development**-clauses- if conditionals.

UNIT V GROUP DISCUSSION AND JOB APPLICATIONS

12

Listening- TED/Ink talks; **Speaking** –participating in a group discussion -**Reading**– reading and understanding technical articles **Writing**– Writing reports- minutes of a meeting- accident and survey-**Vocabulary Development- verbal analogies Language Development-** reported speech

TOTAL: 60 PERIODS

OUTCOMES: At the end of the course learners will be able to:

- Read technical texts and write area- specific texts effortlessly.
- Listen and comprehend lectures and talks in their area of specialisation successfully.
- Speak appropriately and effectively in varied formal and informal contexts.
- Write reports and winning job applications.

TEXT BOOKS:

- 1. Board of editors. Fluency in English A Course book for Engineering and Technology. Orient Blackswan, Hyderabad: 2016
- 2. Sudharshana.N.P and Saveetha. C. **English for Technical Communication**. Cambridge University Press: New Delhi, 2016.

REFERENCES

- 1. Booth-L. Diana, **Project Work**, Oxford University Press, Oxford: 2014.
- Grussendorf, Marion, English for Presentations, Oxford University Press, Oxford: 2007
- 3. Kumar, Suresh. E. Engineering English. Orient Blackswan: Hyderabad, 2015
- **4.** Means, L. Thomas and Elaine Langlois, **English & Communication For Colleges.** Cengage Learning, USA: 2007
- 5. Raman, Meenakshi and Sharma, Sangeetha- **Technical Communication Principles and Practice.**Oxford University Press: New Delhi,2014.

MA8251

ENGINEERING MATHEMATICS - II

L T P C 4 0 0 4

OBJECTIVES:

• This course is designed to cover topics such as Matrix Algebra, Vector Calculus, Complex Analysis and Laplace Transform. Matrix Algebra is one of the powerful tools to handle practical problems arising in the field of engineering. Vector calculus can be widely used for modelling the various laws of physics. The various methods of complex analysis and Laplace transforms can be used for efficiently solving the problems that occur in various branches of engineering disciplines.

UNIT I MATRICES 12

Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of Eigenvalues and Eigenvectors – Cayley-Hamilton theorem – Diagonalization of matrices – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms.

UNIT II VECTOR CALCULUS

12

Gradient and directional derivative – Divergence and curl - Vector identities – Irrotational and Solenoidal vector fields – Line integral over a plane curve – Surface integral - Area of a curved surface - Volume integral - Green's, Gauss divergence and Stoke's theorems – Verification and application in evaluating line, surface and volume integrals.

UNIT III ANALYTIC FUNCTIONS

12

Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by functions w = z + c, cz, $\frac{1}{z}$, z^2 - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION

12

Line integral - Cauchy's integral theorem - Cauchy's integral formula - Taylor's and Laurent's series - Singularities - Residues - Residue theorem - Application of residue theorem for evaluation of real integrals - Use of circular contour and semicircular contour.

UNIT V LAPLACE TRANSFORMS

12

Existence conditions – Transforms of elementary functions – Transform of unit step function and unit impulse function – Basic properties – Shifting theorems -Transforms of derivatives and integrals – Initial and final value theorems – Inverse transforms – Convolution theorem – Transform of periodic functions – Application to solution of linear second order ordinary differential equations with constant coefficients.

OUTCOMES:

TOTAL: 60 PERIODS

After successfully completing the course, the student will have a good understanding of the following topics and their applications:

- Eigenvalues and eigenvectors, diagonalization of a matrix, Symmetric matrices, Positive definite matrices and similar matrices.
- Gradient, divergence and curl of a vector point function and related identities.
- Evaluation of line, surface and volume integrals using Gauss, Stokes and Green's theorems and their verification.
- Analytic functions, conformal mapping and complex integration.
- Laplace transform and inverse transform of simple functions, properties, various related theorems and application to differential equations with constant coefficients.

TEXT BOOKS:

- 1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.
- 2. Kreyszig Erwin, "Advanced Engineering Mathematics ", John Wiley and Sons, 10th Edition, New Delhi, 2016.

REFERENCES:

- 1. Bali N., Goyal M. and Watkins C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- 2. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. O'Neil, P.V. "Advanced Engineering Mathematics", Cengage Learning India Pvt., Ltd, New Delhi, 2007.
- 4. Sastry, S.S, "Engineering Mathematics", Vol. I & II, PHI Learning Pvt. Ltd 4th Edition, New Delhi, 2014.
- 5. Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

PH8254 PHYSICS OF MATERIALS

(Common to courses offered in Faculty of Technology except Fashion Technology)

L T P C

3 0 0 3

OBJECTIVES:

To introduce the physics of various materials relevant to different branches of technology

UNIT I PREPARATION OF MATERIALS

9

Phases - phase rule - binary systems - tie line rule - lever rule - phase diagram - invariant reactions - nucleation - homogeneous and heterogeneous nucleation - free energy of formation of a critical nucleus - Thin films - preparation: PVD, CVD method - Nanomaterials Preparation: wet chemical, solvothermal, sol-gel method.

UNIT II CONDUCTING MATERIALS

9

Classical free electron theory - expression for electrical conductivity - thermal conductivity, - Wiedemann-Franz law - electrons in metals: particle in a three-dimensional box- degenerate states - Fermi-Dirac statistics - density of energy states - electron in periodic potential (concept only) -

electron effective mass – concept of hole. Superconducting phenomena, properties of superconductors – Meissner effect and isotope effect. Type I and Type II superconductors, High $T_{\rm c}$ superconductors – Magnetic levitation and SQUIDS.

UNIT III SEMICONDUCTING MATERIALS

9

Elemental Semiconductors - Compound semiconductors - Origin of band gap in solids (qualitative) - carrier concentration in an intrinsic semiconductor (derivation) - Fermi level - variation of Fermi level with temperature - electrical conductivity - band gap determination - carrier concentration in n-type and p-type semiconductors (derivation) - variation of Fermi level with temperature and impurity concentration - Hall effect - determination of Hall coefficient - LED - Solar cells.

UNIT IV DIELECTRIC AND MAGNETIC MATERIALS

9

Dielectric, Paraelectric and ferroelectric materials - Electronic, Ionic, Orientational and space charge polarization – Internal field and deduction of Clausius Mosotti equation – dielectric loss – different types of dielectric breakdown – classification of insulating materials and their applications - Ferroelectric materials - Introduction to magnetic materials - Domain theory of ferromagnetism, Hysteresis, Soft and Hard magnetic materials – Anti-ferromagnetic materials – Ferrites, magnetoresistance materials.

UNIT V NEW MATERIALS AND APPLICATIONS

9

Metallic glasses – Shape memory alloys: Copper, Nickel and Titanium based alloys – graphene and its properties - Ceramics: types and applications – Composites: classification, role of matrix and reinforcement – processing of fibre reinforced plastics and fibre reinforced metals – Biomaterials: hydroxyapatite – PMMA – Silicone - Sensors: Chemical Sensors - Bio-sensors – conducting, semiconducting and photoresponsive polymers.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the students will able to

- gain knowledge on phase diagrams and various material processing methods,
- acquire knowledge on basics of conducting materials, superconductors and their applications
- get knowledge on the functioning of semiconducting materials and their applications in LED and solar cells,
- understand the functioning of various dielectric and magnetic materials ,
- have the necessary understanding on various advanced materials.

TEXT BOOKS:

- **1.** Balasubramaniam, R. "Callister's Materials Science and Engineering". Wiley India Pvt. Ltd. 2014.
- 2. Kasap, S.O. "Principles of Electronic Materials and Devices". McGraw-Hill Education, 2007.
- **3.** Wahab, M.A. "Solid State Physics: Structure and Properties of Materials". Narosa Publishing House, 2009.

REFERENCES

- 1. Askeland, D. "Materials Science and Engineering". Brooks/Cole, 2010
- 2. Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2015.
- 3. Smith, W.F., Hashemi, J. & Prakash. R. "Materials Science and Engineering". Tata Mcgraw Hill Education Pvt. Ltd., 2014.

CY8291

ORGANIC CHEMISTRY

L T P C 3 0 0 3

OBJECTIVE:

• To enable the students to learn the type of components in which organic reactions take place and also to know the preparation of the essential organic compounds.

UNIT I ORGANIC REACTION MECHANISM

9

Electrophilic reactions-Friedel crafts reaction, Riemer Tiemenn reaction, Beckmann rearrangements; nucleophilic reactions- aldol condensation, perkin reaction, benzoin condensation; free radical reaction-halogenation of alkane, addition of HBr on alkene in presence of peroxide; allylic halogenation - using N-Bromo Succinamide (NBS), thermal halogenation of alkene $CH_3 - CH = CH_2$.

UNIT II CARBOHYDRATES

9

Introduction – mono and disaccharides – important reactions – polysaccarides – starch and cellulose – derivatives of cellulose – carboxy methyl cellulose and gun cotton – structural aspects of cellulose

UNIT III POLYNUCLEAR AROMATICS AND HETEROCYCLES

9

Classification of polynuclear aromatics. naphthalene preparation, properties and uses. Classification of heterocyclic compounds. Furan, thiophene, pyrrole, pyridine, quinoline, isoquinoline - preparation, properties and uses.

UNIT IV AMINO ACIDS AND PROTEINS

9

Classification, preparation (Strecker, Skraup, Gabriel phthalimide) and properties of Amino acids. Composition and classification of proteins. Structure of proteins – tests for proteins – general properties and relations of proteins – hydrolysis of proteins.

UNIT V DRUGS & DYES

9

Classification and properties of drugs. Penicillin sulpha drugs, mode of action, synthesis of sulphanilamide, chloroquine and chloroamphenicol.

Colour and constitution, chromogen and chromophore. Classification of dyes based on structure and mode of dyeing. Synthesis of dyes. Malachite green, methyl orange, congo red, phenolphthalein.

TOTAL: 45 PERIODS

OUTCOMES:

• At the end of the course students will have knowledge on various reaction mechanism, preparation of organic compounds and their properties.

TEXTBOOKS:

- B.S.Bhal and Arun Bhal, "A Text Book of Organic Chemistry", 17th Ed., S Chand & Co. New Delhi, 2005.
- 2. R.T. Morrison and R.N. Boyd "Organic Chemistry", 7th Ed., Prentice Hall Inc. USA, 2010.

REFERENCES:

- Jonathan Clayden, Nick Greeves, Staurt Warren and Peter Wothers, "Organic Chemistry", Oxford University Press, 2nd Ed., New Delhi, 2013.
- 2. K.S. Tiwari, N.K. Vishnoi, S.N. Mehrotra, "A Text Book of Organic Chemistry", Vikas Publishing House, 2nd Ed., New Delhi, 2006.

BE8256

BASIC MECHANICAL ENGINEERING

LTPC

4 0 0 4

OBJECTIVE

• To impart knowledge on thermodynamics and thermal engineering power generating units such as engines and theory of machines

UNIT I LAWS OF THERMODYNAMICS

12

Basic concepts and hints; Zeroth law; First Law of Thermodynamics - Statement and application; Steady flow energy equation-problems- Second law of Thermodynamics - Kelvin - Plank statement and Clausius statement- problems; Limitations; Heat Engine, Refrigerator and Heat Pump, Available energy, Third law of Thermodynamics - Statement.

UNIT II HEATING AND EXPANSION OF GASES

12

Expressions for work done, Internal energy and heat transfer for Constant Pressure, Constant Volume, Isothermal, Adiabatic and Polytropic processes-Derivations and problems; Free expansion and Throttling process.

UNIT III AIR STANDARD CYCLES

12

Carnot cycle; Stirlings cycle; Joule cycle; Otto cycle; Diesel cycle; Dual combustion Cycle-Derivations and problems.

UNIT IV I.C. ENGINES, STEAM AND ITS PROPERTIES AND TEAM

12

Engine nomenclature and classification; SI Engine; CI Engine; Four Stroke cycle, Two stroke cycle; Performance of I.C.Engine; Brake thermal efficiency; Indicated Thermal Efficiency, Specific fuel consumption.

Steam - Properties of steam; Dryness fraction; latent heat; Total heat of wet steam; Dry steam; Superheated steam. Use of steam tables; volume of wet steam, volume of superheated steam; External work of evaporation; Internal energy; Entropy of vapour, Expansion of vapour, Rankine cycle. Steam turbines – Impulse and Reaction types - Principles of operation.

UNIT V SIMPLE MECHANISM, FLY WHEEL, DRIVES AND BALNCING

12

Definition of Kinematic Links, Pairs and Kinematic Chains; Flywheel-Turning moment Diagram; Fluctuation of Energy. Belt and rope drives; Velocity ratio; slip; Creep; Ratio of tensions; Length of belt; Power Transmitted; gear trains-types. Balancing of rotating masses in same plane; Balancing of masses rotating in different planes.

TOTAL: 60 PERIODS

OUTCOME

 Students should learn thermodynamics and thermal engineering to understand the principles behind the operation of thermal equipments like IC engines and turbines etc., Students should be able to appreciate the theory behind operation of machinery and be able to design simple mechanisms

TEXT BOOKS

- 1. Nag, P.K., "Engineering Thermodynamics", IInd Edition, Tata McGraw Hill Publishing Co., Ltd., 1995
- 2. Rajput, R.K, "Thermal Engineering", Laxmi publications (P) Ltd, 2001.
- 3. Khurmi R.S., and Gupta J.K, "Theory of Machines", Eurasia Publishing House (P) Ltd., 2004.

REFERENCES

- 1. Bhaskaran, K.A., and Venkatesh, A., "Engineering Thermodynamics ",Tata McGraw Hill, 1973.
- 2. Khurmi R.S., and Gupta J.K, "Thermal Engineering", S.Chand & Company (P) Ltd., 2001.
- 3. Kothandaraman and Dhomkundwar,": A course in Thermal Engineering (SI Units)", Dhanpat Rai and Sons, Delhi (2001)
- 4. Pandya A. and Shah, "Theory of Machines", Charatakar Publishers, 1975.
- 5. Smith, "Chemical Thermodynamics", Reinhold Publishing Co., 1977.

PE8201

INTRODUCTION TO PETROLEUM ENGINEERING

LTPC 3 0 0 3

OBJECTIVE

• To provide an overview of petroleum industry. Petroleum exploration and exploitation techniques, oil and gas reserve identification and evaluation. Drilling and production of oil and gas. Desposal of effluents.

UNIT I 9

Earth science - occurrence of petroleum Rocks and traps. Reservoir rocks and properties. Classification of oil and gas reserves Reservoir mechanics and drive mechanism.

UNIT II 9

Drilling – introduction to drilling of oil and gas wells. Drilling rigs and equipments. Drilling fluids and cementing.

UNIT III 9

Logging techniques. Various types of logs. Formation parameters. Log applications. Formation evaluation. Well completion.

UNIT IV 9

Petroleum exploitation – well testing, production potential and well performances. Material balance, Artificial lift, Improved recovery methods.

UNIT V 9

Surface equipments, processing of oil and gas. Transportation of oil and gas. Effluent treatment. Petroleum economics. Supply and demand trends.

TOTAL: 45 PERIODS

Text Books / Reference Books:

- 1. Geology of Petroleum by Leverson A.L.- 2nd edition The AAPG foundation, 2006.
- 2. Principles of oil production by T.E.W Nind- 2nd edition Mc Graw-Hill, 1981.
- 3. Introduction to Petroleum Engineering by Geltin
- 4. Wellsite Geological Techniques for petroleum exploration, Oxford and IBH publishing company, 1988

CY8281

ORGANIC CHEMISTRY LABORATORY

LTPC 0 0 4 2

OBJECTIVE:

• To learn basic principles involved in analysis and synthesis of different organic derivatives.

LIST OF EXPERIMENTS

- 1. Quantitative analysis of organic compounds Identification of aliphatic/aromatic, saturated/unsaturated compounds.
- 2. Identification and characterization of various functional groups by their characteristic reactions: a) alcohol, b) aldehyde, c) ketone, d) carboxylic acid, e) phenol, f) ester,
 - g) primary, secondary and tertiary amines and h) nitro compounds.
- 3. Analysis of an unknown organic compound and preparation of suitable solid derivatives (Benzoic acid from Benzaldhehyde, hydrolysis of ester and meta- dinitrobenzene from nitrobenzene).
- 4. Analysis of carbohydrates.
- 5. Analysis of proteins.
- 6. Methodology of filtration and recrystallization.
- 7. Introduction to organic synthetic procedures:
 - i. Acetylation Preparation of acetanilide from aniline.
 - ii. Hydrolysis Preparation of salvcilic acid from methyl salvciliate.
 - iii. Substitution Conversion of acetone to iodoform.
 - iv. Nitration Preparation of m-dinitrobenzene from nitrobenzene.
 - v. Oxidation Preparation of benzoic acid from benzaldehyde/ benzyl alcohol

TOTAL: 60 PERIODS

List of Equipment for a Batch of 30 students

SI.No.	Description of Equipment	Quantity					
Essenti	Essential						
1.	Bunsen burners	30					
2.	LPG Cylinder in each row of the Laboratory						
3.	Hot Air Oven	2 Nos					
4.	Hot Plate	6 Nos					
5.	Water Bath	6 Nos					
6.	Deep freezer	1 No.					
7.	Magnetic Stirrers	6 Nos.					

8.	Mechanical Stirrers	6 Nos.		
9.	Refluxion Set up			
10.	Sharp Knives to cut sodium	6 Nos.		
11.	Balance			
Desirab	Desirable			
	Melting Point apparatus			

OUTCOME:

The student is able to identify what distinguishes a strong and weak nucleophile and recall the
rules of reactions. The student shows their mastery of nomenclature since ethyl bromide is not
drawn out. The student analyzes a list of compounds and determines their reactivity.

REFERENCES:

- 1. Organic Chemistry Lab Manual, Chemistry Division, Chemical Engineering Department, A.C. Tech, Anna University, 2007.
- 2. Vogels's Text Book of Practical Organic Chemistry, Fifth Edition, Longman Singapore Publishers Pte. Ltd., Singapore, 1989.

GE8261

ENGINEERING PRACTICES LABORATORY

LT P C 0 0 4 2

OBJECTIVES:

To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

I CIVIL ENGINEERING PRACTICE

13

Buildings:

(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:

- (a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- (b) Study of pipe connections requirements for pumps and turbines.
- (c) Preparation of plumbing line sketches for water supply and sewage works.
- (d) Hands-on-exercise:
 - Basic pipe connections Mixed pipe material connection Pipe connections with different joining components.
- (e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:

(a) Study of the joints in roofs, doors, windows and furniture.

(b) Hands-on-exercise:

Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE

18

Welding:

- (a) Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding.
- (b) Gas welding practice

Basic Machining:

- (a) Simple Turning and Taper turning
- (b) Drilling Practice

Sheet Metal Work:

- (a) Forming & Bending:
- (b) Model making Trays and funnels.
- (c) Different type of joints.

Machine assembly practice:

- (a) Study of centrifugal pump
- (b) Study of air conditioner

Demonstration on:

- (a) Smithy operations, upsetting, swaging, setting down and bending. Example Exercise Production of hexagonal headed bolt.
- (b) Foundry operations like mould preparation for gear and step cone pulley.
- (c) Fitting Exercises Preparation of square fitting and V fitting models.

GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE

13

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lamp wiring.
- 3. Stair case wiring
- 4. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.
- 6. Measurement of resistance to earth of an electrical equipment.

IV ELECTRONICS ENGINEERING PRACTICE

16

- 1. Study of Electronic components and equipments Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
- 2. Study of logic gates AND, OR, EX-OR and NOT.
- 3. Generation of Clock Signal.
- 4. Soldering practice Components Devices and Circuits Using general purpose PCB.
- 5. Measurement of ripple factor of HWR and FWR.

TOTAL: 60 PERIODS

OUTCOMES:

On successful completion of this course, the student will be able to

- fabricate carpentry components and pipe connections including plumbing works.
- use welding equipments to join the structures.
- Carry out the basic machining operations
- Make the models using sheet metal works
- Illustrate on centrifugal pump, Air conditioner, operations of smithy, foundary and fittings
- Carry out basic home electrical works and appliances
- Measure the electrical quantities
- Elaborate on the components, gates, soldering practices.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS: CIVIL

 Assorted components for plumbing consisting of metallic pipes, 	
plastic pipes, flexible pipes, couplings, unions, elbows, plugs and	
other fittings.	15 Sets.
2. Carpentry vice (fitted to work bench)	15 Nos.
3. Standard woodworking tools	15 Sets.
4. Models of industrial trusses, door joints, furniture joints	5 each
5. Power Tools: (a) Rotary Hammer	2 Nos
(b) Demolition Hammer	2 Nos
(c) Circular Saw	2 Nos
(d) Planer	2 Nos
(e) Hand Drilling Machine	2 Nos
(f) Jigsaw	2 Nos
MECHANICAL	
1. Arc welding transformer with cables and holders	5 Nos.
Welding booth with exhaust facility	5 Nos.
3. Welding accessories like welding shield, chipping hammer,	
wire brush, etc.	5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other	
welding outfit.	2 Nos.
5. Centre lathe	2 Nos.
6. Hearth furnace, anvil and smithy tools	2 Sets.
7. Moulding table, foundry tools	2 Sets.
8. Power Tool: Angle Grinder	2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner ELECTRICAL	One each.
Assorted electrical components for house wiring	15 Sets
Electrical measuring instruments	10 Sets
2. Liounda moudaing monamente	.0 00.0

3. Study purpose items: Iron box, fan and regulator, emergency lamp	1 each
4. Megger (250V/500V)	1 No.
5. Power Tools: (a) Range Finder	2 Nos
(b) Digital Live-wire detector	2 Nos
ELECTRONICS	
1. Soldering guns	10 Nos.
2. Assorted electronic components for making circuits	50 Nos.
3. Small PCBs	10 Nos.
4. Multimeters	10 Nos.
Study purpose items: Telephone, FM radio, low-voltage power supply	